

THE HIDDEN WORLD WITHIN: EXPLORING THE MYCOBLOTA

Dr. Nesma Abdel Aziz Hamdi Hassanin

Lecturer of Medical Microbiology & Immunology Faculty of Medicine – Ain Shams University Member of Medical Microbiologists & Immunologists Association

TABLE OF CONTENTS

- O1 INTRODUCTION: WHAT IS THE MYCOBIOTA?
- O2 FACTORS INFLUENCING THE MYCOBIOME
- **O3** METHODOLOGIES FOR STUDYING MYCOBIOTA
- $\mathbf{O4} \qquad \mathbf{THE ORAL MYCOBIOTA}$
- 05 The GUT MYCOBIOTA
- **O6 MYCOBIOTA AT OTHER BODY SITES**
- **O7 MYCOBIOME DYSBIOSIS**
- **O8** CONCLUDING REMARKS

INTRODUCTION what is the Mycobiota? The term "microbiota" invokes images of mucosal surfaces densely populated with bacteria.

- However, research from this past decade has started to complete the picture by focusing on largely <u>neglected components</u> of the microbiota: archaea, fungi, protozoa, & viruses.
 - The community of commensal fungi, the **mycobiota**, interacts with commensal bacteria & the host, influencing overall body health and homeostasis.

- Fungi are **microeukaryotes** which their presence in humans was historically thought to be only associated with pathogenesis.
- It was recently proved they can be **isolated** from humans in the **absence of disease**.
 - Investigation of intestinal commensal-host symbiosis places emphasis on gut bacteria while neglecting gut fungi due to their lower abundance (0.01–0.1% of gut microbiome).
 - In the period of <u>2008–2018</u>, there have been almost <u>100 times more peer-reviewed publications on</u> <u>microbiota than on mycobiota</u>.

Notably, despite relatively small number of gut fungi, they profoundly affect <u>intestinal</u> <u>homeostasis & barrier function</u>.

They also interact with the host immune system, impacting <u>mucosal immune responses</u> <u>& inflammation</u>.

Though there is still relatively poor understanding of the influence of gut mycobiota on host's health & disease, imbalance in gut mycobiota has been linked to various gastrointestinal & systemic diseases.

- Complex populations of fungi have been found associated with the skin & all mucosal surfaces of the healthy human body, especially the GIT.
- The fungal populations that are found on mucosal surfaces tend to be more diverse than those on the skin.
 - In general, *Malassezia spp., Aspergillus spp., & Candida spp.* are among the most fungal Mycobiota <u>isolated from healthy individuals.</u>

FACTORS INFLUENCING O2 THE MYCOBJOME

Compared to the bacterial microbiome, the mycobiome seems to be less consistent & less stable over time.

•

•

The mycobiome is primarily shaped by delivery mode, diet, body weight, sex, age, medication, immune responses, the environment & geographical localization.

 Table 1 Factors affecting the composition of gut mycobiota

Factors		Composition of gut mycobiota	References
Delivery method	Natural birth	Fungi from mother's genital tract ↑ Russulales ↑	[37, 40–42]
	C-section	Fungi from maternal skin and surroundings \uparrow Saccharomycetales \uparrow	
Gestational age	Preterm infants	Fungal diversity ↓ Saccharomycetales ↑ <i>Candida</i> ↑	[37]
	Term infants	Polyporales ↑ Russulales ↑ <i>Stereum</i> ↑ <i>Malassezia</i> ↑	
Environment	Mice from Jackson Laboratory's & Services (JAX)	Basidiomycota ↑	[18, 43]
• Season	<u>Naturally born infants</u> are from maternal genital tr <u>cesarean delivery</u> are more maternal skin. <u>Preterm delivery</u> is specifie	e more likely to get cact, whereas infants e likely to get <i>Malasse</i> cally associated with	<i>Candia</i> s born zia spp Candid

spp. colonization.

Diet and nutrition

 Table 2. The list of food products colonized or contaminated by food-borne microscopic fungi.

	Food Product	Microscopic Fungi	References
		Fruit and vegetables	
	Fresh citrus and grape	Candida prunicola, Pichia fermentans Saccharomyces cerevisiae, Pichia kluyveri, Pichia kudriavzevii,	[66]
	Fresh apple, plum and pear	Galactomyces candidus, Hanseniaspora uvarum, Hanseniaspora guilliermondii	[67]
	Peeled fruit salads	Candida sp., Debaryomyces sp., Rhodotorula sp., Penicillium sp., Cladosporium sp.	[68]
	N Dried fruit	Cladosporium sp., Aspergillus niger, Aspergillus tubingiensis, Penicillium palitans	[68,69]
	 Various fresh vegetables (salad, tomato, cucumber, green inion, lettuce, spinach, etc.) 	Geotrichum sp., Alternaria sp., Cladosporium sp., Penicillium sp.	[68,70]
		Dairy	
	Various cheeses (Blue cheese, Camembert, Cheddar)	Penicillium sp., Candida sp., Scopulariopsis sp.	[64]
	Acidophilus milk	Saccharomyces fragilis, Candida pseudotropicalis	[71,72]
		Meat	
er	Various meats (fermented sausage, dried meat, salami, ham)	Debaryomyces sp., Penicillium sp.	[64]
		Beverages	
polic disorder	Wine Beer Sake	Hanseniaspora sp., Saccharomyces sp. Brettanomyces sp., Saccharomyces sp. Aspergillus sp., Saccharomyces sp.	[73,74] [73,74] [73]
		Other	
nal antibiotic exp	Various nuts (pecan, almond, walnut, pine nut)	Aspergillus sp. Penicillium sp., Alternaria sp., Cladosporium sp., Rhizopus sp., Fusarium sp.	[69]
25	Koji	Aspergillus sp., Rhizopus sp.	[75]
	Soy sauce Steamed pastry	Aspergillus sp., Hansenula sp., Zygosaccharomyces sp. Wickerhamomyces anomalus	[73] [76,77]

METHODOLOGIES FOR STUDYING MYCOBIOTA

O3

 Methodologies for studying gut mycobiome are divided into <u>culture-dependent &</u> <u>culture-independent methods.</u>

 Traditionally, fungal diversity was assessed using culture-dependent methods, using various culture media as <u>SDA</u> & <u>CHROMagar™ Candida medium</u> used for Candida isolation & differentiation.

• <u>ID fungi plate culture</u> with MALDI-TOF MS is suitable for identification of filamentous fungi.

Device for **rapid identification** of molds and dermatophytes by **MALDI-TOF**

- Though cultivation of fungi is the most direct method with visualization of fungal morphology and colony color, there are some <u>limitations in its</u> <u>application</u>:
 - During cultivation, the environmental fungi may contaminate culture & easily affect the precision of results.
 - ✓ It is difficult to distinguish specific species and genus of similarly looking fungi even by microscope.
 - ✓ Some fungi **cannot be cultured**.

✓ Culture methods are very time-consuming.

- **Culture-independent methods** depends on recent advances in <u>deep-sequencing technologies</u> and bioinformatics analysis, which are based on the analysis of genomic DNA, shedding light on the complexity of the gut fungal communities.
- Generally, many culture-independent methods have been developed, such as <u>sequencing for 18s ribosomal DNA, ITS-1</u> and 2, & RFLP.
- The advent of sequencing technology allowed us to answer important questions about fungi:
 - Which fungi do commensal communities comprise?
 - Are they transiently present or do they stably colonize?
 - What are their functions?
- **Overall, there is no consensus on the optimal methodology** for characterizing mycobiome.

- Ghannoum et al. identified a total of 101 species in the oral cavities of 20 healthy individuals.
- The oral mycobiome appears to be more subject specific than the oral bacteriome.
 - Oral mycobiota comprises active & transient colonizers.

Members of the Oral Mycobiota

Among the most found fungi in the oral cavity are *Aspergillus spp. & Candida spp.*

•

•

•

<u>Candida infections</u> of the oral cavity are <u>very</u> <u>common</u>. On the other hand, <u>pathological</u> <u>conditions due to Aspergillus are rare</u> in the oral cavity.

This discrepancy might be due to the possibility that *Aspergillus* is a transient **member** of the oral mycobiome, acquired via diet intake or inhalation.

Other fungi of the oral mycobiota, such as Saccharomyces, Penicillium, Malassezia, Cladosporium, & Fusarium also represent active members of the oral microbiota.

Fungal-Bacterial Interactions in the Oral Cavity

Streptococcus sanguis

Streptococcus mutans

Candida spp

- The oral commensal *Fusobacterium spp*. has been shown to adhere to both the yeast and hyphal forms of *C. albicans*, <u>limiting its</u> <u>ability of hyphal formation</u>, thus reducing its ability to kill macrophages.
- The commensal *Aggregatibacter spp*. <u>inhibits biofilm production</u> by *C. albicans* through the secretion of the quorum-sensing molecules.

- Various studies have investigated mutualistic interactions between *C. albicans* & *Streptococcus spp.* that promote infection by taking an active part in <u>biofilm formation and</u> <u>plaque virulence.</u>
- This is mediated by <u>cell wall polysaccharides</u>, <u>salivary</u> <u>proteins</u>, <u>adhesins on the surface of *Streptococci* & <u>receptors</u> <u>on surface of *Candida*</u>.</u>

Candida spp

Development of GUT Mycobiota

- Willis et al. recently suggested that fungal species might be present prior to birth & that C. albicans specifically could be associated with preterm delivery.
- Additional studies have shown that vaginal delivery allows vertical transmission of *Candida spp*. from mother to infant.
- Infants born by **C-section** harbor a bacterial microbiome similar to the mother's skin microbiome, therefore they also harbor higher *Malassezia spp*. in their GIT.
- Boix-Amorós et al. found a core breast milk mycobiome, composed of Malassezia, Cladosporium, & Penicillium.
- Accordingly, the infant gut mycobiome is **initially dominated by** *Malasseziales*, most likely taken up through lactation.

- After the first 6 months of age, the infant gut mycobiome undergoes a dramatic change and is no longer dominated by *Malasseziales* but by *Saccharomycetales* instead.
- This change in mycobiome coincides with a change from breast milk to solid food.
- The gut microbiota further changes and matures during the development from childhood to adulthood.
- These changes are most likely driven by the development of the immune system and by the microorganisms that humans are exposed to through their diet and environment.

Members of GUT Mycobiota

Similar to the oral mycobiome, GUTmycobiota comprisesactive & transientcolonizers.

Several studies determined *Saccharomyces*, *Malassezia*, & *Candida* as the three most abundant genera present in the human gut .

- Saccharomyces is ubiquitously present in the human diet.
- ✓ Malassezia is the most abundant fungus colonizing the human skin.
- ✓ Candida is the most identified fungus in the oral cavity.

Fungal-Bacterial Interactions in the GUT

- Saccharomyces spp. & C. albicans have been extensively studied as a potential probiotics due to its protective effect against various bacterial GI pathogens.
- Probiotic bacterial strains *Lactobacillus & Bifidobacterium spp.* have shown efficacy in <u>limiting the</u> <u>severity of C. albicans</u> infection:
 - ✓ Inhibit the transition to invasive hyphal form
 - ✓ Inhibit biofilm formation

- Enterohemorrhagic E.coli enhances C. albicans invasion of intestinal epithelial cells in vitro.
- *C. albicans* allows the growth of the strict anaerobe *C. difficile* under aerobic culture conditions due to the rapid reduction of dissolved oxygen in the vicinity of the yeast.
- *H. pylori* was found within vacuoles in *C. albicans* cells which provides an environment that *H. pylori* can use to <u>survive the low pH of the</u> <u>stomach</u>.
- S. cerevisiae enhances the growth of the opportunistic Acinetobacter baumannii by producing ethanol.

Mycobiota at Other Body Sites

06

\cdot

MYCOBIOME DYSBIOSIS

07

Targets		Diseases	Related fungi	Reference
Intestinal tract	_	→ Inflammatory bowel disease (IBD)	Basidiomycota ↑ Ascomycota ↓ <i>Candida</i> ↑ 5. <i>cerevisiae</i> ↓	[115–118]
		-> Celiac disease	Candida↑	[119, 120]
	_	Colon cancer	C. tropicalis ↑	[121, 122]
Extra-intertinal tract	Lung	Fluconazole induced Allergic airway disease (AAD)	<i>Candida</i> ↓ Aspergillus↑ Wallemia↑ Epicoccum↑	[11, 114]
		Pulmonary infection	Histoplasma capsulatum	[123]
	Liver	Cirrhosis	Fungal detection ↑	[124]
	Kidney (possible)	Sepsis	C. albicans	[125, 126]
	Pancreas	➡ Pancreatic ductal adenocarcinoma (PDA)	Malassezia ↑	[127]
	Brain	➡ Multiple sclerosis (MS)	Candida	[128]
	_	Schizophrenia (SCs)	Chaetomium ↑	[129]

Table 3 Association of enteral and parenteral diseases with gut mycobiota

" \uparrow " indicates increase and " \downarrow " indicates decrease

- Mycobiome research is a **rapidly expanding field**, yet many questions are currently still unanswered.
- Due to the high inter- and intra-individual variability, it is unclear if core mycobiomes can be defined.
- Future research will expand our knowledge on which fungi are resident and which are transiently present in the gastrointestinal tract.

THANK YOU

References

https://journals.asm.org/doi/10.1128/iai.00648-20 https://www.nature.com/articles/nri3684 https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-021-01024-x https://www.mdpi.com/2309-608X/8/10/1046 https://www.nature.com/articles/nri.2017.55